A Geometric Application of Nori’s Connectivity Theorem

CLAIRE VOISIN

Abstract. We study (rational) sweeping out of general hypersurfaces by varieties having small moduli spaces.
As a consequence, we show that general K-trivial hypersurfaces are not rationally swept out by abelian varieties of dimension at least two.
As a corollary, we show that Clemens’ conjecture on the finiteness of rational curves of given degree in a general quintic threefold, and Lang’s conjecture saying that such varieties should be rationally swept-out by abelian varieties, contradict.

Mathematics Subject Classification (2000): 14C05 (primary); 14D07 (secondary).

0. – Introduction

Our purpose in this paper is to contribute to the study of rational maps from r-dimensional varieties to general hypersurfaces in projective space (cf [5], [20], [12], [4]). In the last section, we shall eventually extend this to the study of correspondences instead of rational maps. The problem we consider is the following: given a family $\mathcal{Y} \to S$ of r-dimensional smooth projective varieties, when is a general hypersurface X of degree d in projective space \mathbb{P}^{n+1} swept out by images of rational maps from one member of this family to X?

(Recall that the word “general” in this context means “away from countably many proper Zariski closed subsets of the moduli space”.)

Our approach to this problem is Hodge theoretic. Unlike [5], [20], [12], [4], the result has nothing to do with the canonical bundle of the varieties Y_t, $t \in S$. Instead, our answer will depend only on the dimension of the moduli space S. Roughly speaking, the idea is as follows: assume that dim S is small, but the general X is covered by images of rational maps from one member of this family to X; then there is a universal dominating rational map Φ fitting in the following commutative diagram

$$
\Phi : \mathcal{X} \longrightarrow X_U \\
\downarrow \pi \downarrow \\
B \rightarrow U,
$$