Summability of semicontinuous supersolutions to a quasilinear parabolic equation

JUHA KINNUNEN AND PETER LINDQVIST

Abstract. We study the so-called p-superparabolic functions, which are defined as lower semicontinuous supersolutions of a quasilinear parabolic equation. In the linear case, when $p = 2$, we have supercaloric functions and the heat equation. We show that the p-superparabolic functions have a spatial Sobolev gradient and a sharp summability exponent is given.

Mathematics Subject Classification (2000): 35K55.

1. Introduction

The objective of our work is a class of unbounded “supersolutions” of the partial differential equation

$$\frac{\partial u}{\partial t} = \text{div}(|\nabla u|^{p-2}\nabla u), \quad 1 < p < \infty. \quad (1.1)$$

The functions that we have in mind are pointwise defined as lower semicontinuous functions obeying the comparison principle with respect to the solutions of (1.1). They are called p-superparabolic functions. In the linear case $p = 2$ we have the ordinary heat equation and supercaloric functions. In the stationary case supercaloric functions are nothing else but superharmonic functions, well-known in the classical potential theory. The p-superparabolic functions play an important role in the Perron method in a nonlinear potential theory, described in [7]. We seize the opportunity to mention that the p-superparabolic functions are precisely the viscosity supersolutions of (1.1), which fact will not be considered in the present work, see [5].

It is important to observe that in their definition (to be given below) the p-superparabolic functions are not required to have any derivatives. The only tie

This research was partially done at Mittag-Leffler Institute during a special year in PDE’s in 1999-2000.