A quantitative version of the isoperimetric inequality:
the anisotropic case

LUCA ESPOSITO, NICOLA FUSCO AND CRISTINA TROMBETTI

Abstract. We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if \(E \) is a set with small anisotropic isoperimetric deficit, then \(E \) is “close” to the Wulff shape set.

Mathematics Subject Classification (2000): 52A40 (primary); 28A75 (secondary).

1. Introduction and main results

Let \(\Gamma : \mathbb{R}^N \to [0, +\infty) \) be a positively 1–homogeneous convex function such that \(\Gamma(x) > 0 \) for all \(x \neq 0 \). The Wulff problem associated to \(\Gamma \) is

\[
\text{Min} \left\{ \int_{\partial^* E} \Gamma(v^E(x)) \, d\mathcal{H}^{N-1} : \mathcal{L}^N(E) = \text{const} \right\},
\]

where \(E \) ranges among all sets of finite perimeter satisfying the constraint \(\mathcal{L}^N(E) = \text{const} \) Here \(v^E \) is the (generalized) outer normal to \(E \) and \(\partial^* E \) is the (reduced) boundary of \(E \) (which equals the usual boundary \(\partial E \) if \(E \) is smooth). For an anisotropic function \(\Gamma \), one of the first attempts to solve this problem is contained in a paper by G. Wulff [22] dating back to 1901. However, it was only in 1944 that A. Dinghas [9] proved that within the special class of convex polytopes the minimiser of (1.1) is a set homothetic to the unit ball of the dual norm of \(\Gamma(x) \), i.e.,

\[
W_\Gamma = \{ x \in \mathbb{R}^N : \langle x, v \rangle - \Gamma(v) < 0 \text{ for all } v \in \mathbb{S}^{N-1} \},
\]

which is known as the Wulff shape set.

Introducing the quantity

\[
P_\Gamma(E) = \int_{\partial^* E} \Gamma(v^E(x)) \, d\mathcal{H}^{N-1},
\]