Counting lines on surfaces

SAMUEL BOISSIÈRE AND ALESSANDRA SARTI

Abstract. This paper deals with surfaces with many lines. It is well-known that a cubic contains 27 of them and that the maximal number for a quartic is 64. In higher degree the question remains open. Here we study classical and new constructions of surfaces with high number of lines. We obtain a symmetric octic with 352 lines, and give examples of surfaces of degree d containing a sequence of $d(d-2)+4$ skew lines.

Mathematics Subject Classification (2000): 14N10 (primary); 14Q10 (secondary).

![Cubic surface with 27 lines](http://enriques.mathematik.uni-mainz.de/surf/logo.jpg)

1. **Introduction**

Motivation for this paper is the article of 1943 by Segre [12] which studies the following classical problem: What is the maximum number of lines that a surface of degree d in \mathbb{P}^3 can have? Segre answers this question for $d = 4$ by using some nice geometry, showing that it is exactly 64. For the degree three it is a classical result that each smooth cubic in \mathbb{P}^3 contains 27 lines, but for $d \geq 5$ this number is still not known. In this case, Segre shows in [12] that the maximal number is less

The second author was partially supported by DFG Research Grant SA 1380/1-2.

Received June 20, 2006; accepted in revised form November 8, 2006.