On the de Rham cohomology of solvmanifolds

SERGIO CONSOLE AND ANNA FINO

Abstract. Using results by D. Witte [35] on the superrigidity of lattices in solvable Lie groups we get a new proof of a recent remarkable result obtained by D. Guan [15] on the de Rham cohomology of a compact solvmanifold, i.e., of a quotient of a connected and simply connected solvable Lie group G by a lattice Γ. This result can be applied to compute the Betti numbers of a compact solvmanifold G/Γ even in the case that the solvable Lie group G and the lattice Γ do not satisfy the Mostow condition.

Mathematics Subject Classification (2010): 53C30 (primary); 22E25, 22E40 (secondary).

1. Introduction

Let M be a compact solvmanifold, i.e., a quotient of a connected and simply connected solvable Lie group G by a lattice Γ. Denote by $\text{Ad}_G(G)$ (respectively, $\text{Ad}_G(\Gamma)$) the subgroup of $\text{GL}(g)$ generated by $e^{\text{ad}X}$, for all X in the Lie algebra g of G (respectively, in the Lie algebra of Γ). It is well known that if G is a simply connected solvable Lie group, then $\text{Ad}_G(G)$ is a solvable algebraic group and $\text{Aut}(G) \cong \text{Aut}(g)$. We will denote by $\mathcal{A}(\text{Ad}_G(G))$ and $\mathcal{A}(\text{Ad}_G(\Gamma))$ the real algebraic closures of $\text{Ad}_G(G)$ and $\text{Ad}_G(\Gamma)$ respectively.

In general, as a consequence of the Borel density theorem (see [34, Corollary 4.2] and Theorem 3.1 here) applied to the adjoint representation, one has that if Γ is a lattice of a connected solvable Lie group G, then $\mathcal{A}(\text{Ad}_G(G)) = T_{\text{cpt}} \mathcal{A}(\text{Ad}_G(\Gamma))$ is a product of the groups T_{cpt} and $\mathcal{A}(\text{Ad}_G(\Gamma))$, where T_{cpt} is any maximal compact torus of $\mathcal{A}(\text{Ad}_G(G))$.

If $\mathcal{A}(\text{Ad}_G(G)) = \mathcal{A}(\text{Ad}_G(\Gamma))$, i.e., if G and Γ satisfy the Mostow condition, then the de Rham cohomology $H_{\text{dR}}^*(M)$ of the compact solvmanifold $M = G/\Gamma$ can be computed by the Chevalley-Eilenberg cohomology $H^*(g)$ of the Lie algebra g of G (see [26] and [30, Corollary 7.29]); indeed, one has the isomorphism

$$H_{\text{dR}}^*(M) \cong H^*(g).$$

(1.1)

This work was supported by the Projects MIUR “Riemannian Metrics and Differentiable Manifolds”, “Geometric Properties of Real and Complex Manifolds” and by GNSAGA of INdAM.

Received December 24, 2009; accepted in revised form July 15, 2010.