Quantitative uniqueness estimates for the shallow shell system
and their application to an inverse problem

Michele Di Cristo, Ching-Lung Lin and Jenn-Nan Wang

Abstract. In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.

Mathematics Subject Classification (2010): 53J58 (primary); 35R30 (secondary).

1. Introduction

In this work we study a quantitative uniqueness for the shallow shell system and its application to the inverse problem of estimating the size of an embedded inclusion by boundary measurements. To begin, we let Ω be a bounded domain in \mathbb{R}^2. Without loss of generality, we assume $0 \in \Omega$. Let $\hat{\theta} : \overline{\Omega} \rightarrow \mathbb{R}$ satisfy an appropriate regularity assumption which will be specified later. For a shallow shell, its middle surface is described by $\{(x_1, x_2, \varepsilon \rho_0 \hat{\theta}(x_1, x_2)) : \chi_1, x_2 \in \overline{\Omega}\}$ for $\varepsilon > 0$, where $\rho_0 > 0$ is the characteristic length of Ω (see Section 3.1). From now on, we set $\theta = \rho_0 \hat{\theta}$. Let $u = (u_1, u_2, u_3) = (u', u_3) : \Omega \rightarrow \mathbb{R}^3$ represent the displacement vector of the middle surface. Then u satisfies the following equations:

$$
\begin{align*}
-\partial_j n_{ij}^\theta(u) & = 0 \quad \text{in} \quad \Omega, \\
\partial_i^2 m_{ij}(u_3) - \partial_j (n_{ij}^\theta(u) \partial_i \theta) & = 0 \quad \text{in} \quad \Omega,
\end{align*}
$$

where

$$
\begin{align*}
m_{ij}(u_3) &= \rho_0^2 \left\{ \frac{4\lambda \mu}{3(\lambda + 2\mu)} (\Delta u_3) \delta_{ij} + \frac{4\mu}{3} \partial_i^2 u_3 \right\}, \\
n_{ij}^\theta(u) &= \frac{4\lambda \mu}{\lambda + 2\mu} \varepsilon_{kk}^\theta(u) \delta_{ij} + 4\mu \varepsilon_{ij}^\theta(u), \\
\varepsilon_{ij}^\theta(u) &= \frac{1}{2} (\partial_i u_j + \partial_j u_i + (\partial_i \theta) \partial_j u_3 + (\partial_j \theta) \partial_i u_3),
\end{align*}
$$

Lin and Wang’s work was supported in part by the National Science Council of Taiwan.

Received December 2, 2010; accepted May 20, 2011.