A quantitative characterisation of functions with low Aviles Giga energy on convex domains

ANDREW LORENT

Abstract. Given a connected Lipschitz domain \(\Omega \) we let \(\Lambda(\Omega) \) be the set of functions in \(W^{2,2}(\Omega) \) with \(u = 0 \) on \(\partial \Omega \) and whose gradient (in the sense of trace) satisfies \(\nabla u(x) \cdot \eta_x = 1 \), where \(\eta_x \) is the inward pointing unit normal to \(\partial \Omega \) at \(x \).

The functional \(I_\epsilon(u) = \frac{1}{2} \int_\Omega \epsilon^{-1} \left| 1 - \left| \nabla u \right|^2 \right|^2 + \epsilon \left| \nabla^2 u \right|^2 \, dz \), minimised over \(\Lambda(\Omega) \), serves as a model in connection with problems in liquid crystals and thin film blisters. It is also the most natural higher order generalisation of the Modica and Mortola functional. In [16] Jabin, Otto and Perthame characterised a class of functions which includes all limits of sequences \(u_n \in \Lambda(\Omega) \) with \(I_{\epsilon_n}(u_n) \to 0 \) as \(\epsilon_n \to 0 \). A corollary to their work is that if there exists such a sequence \((u_n) \) for a bounded domain \(\Omega \), then \(\Omega \) must be a ball and (up to change of sign) \(u := \lim_{n \to \infty} u_n \) is equal \(\text{dist}(\cdot, \partial \Omega) \). We prove a quantitative generalisation of this corollary for the class of bounded convex sets. Namely we show that there exists a positive constant \(\gamma_1 \) such that, if \(\Omega \) is a convex set of diameter 2 and \(u \in \Lambda(\Omega) \) with \(I_\epsilon(u) = \beta \), then \(|B_1(x) \triangle \Omega| \leq c\beta^{\gamma_1} \) for some \(x \) and

\[
\int_{\Omega} \left| \nabla u(z) + \frac{z - x}{|z - x|} \right|^2 \, dz \leq c\beta^{\gamma_1}.
\]

A corollary of this result is that there exists a positive constant \(\gamma_2 < \gamma_1 \) such that if \(\Omega \) is convex with diameter 2 and \(C^2 \) boundary with curvature bounded by \(\epsilon^{-1/2} \), then for any minimiser \(u \) of \(I_\epsilon \) over \(\Lambda(\Omega) \) we have

\[
\| u - \xi \|_{W^{1,2}(\Omega)} \leq c(\epsilon + \inf_y |\Omega \triangle B_1(y)|)^{\gamma_2},
\]

where \(\xi(z) = \text{dist}(z, \partial \Omega) \). Neither of the constants \(\gamma_1 \) or \(\gamma_2 \) are optimal.

Mathematics Subject Classification (2010): 49N99 (primary).

1. Introduction

We consider the following functional

\[
I_\epsilon(u) = \frac{1}{2} \int_{\Omega} \epsilon^{-1} \left| 1 - \left| \nabla u \right|^2 \right|^2 + \epsilon \left| \nabla^2 u \right|^2 \, dz
\]

the study of which arises from a number of sources, one of the earliest and most important of which is the article by Aviles and Giga [7]. We will refer to the quantity

Received February 1, 2009; accepted in revised form February 20, 2012.