Dimensionality and the stability of the Brunn-Minkowski inequality

RONEN ELDAN AND BO’AZ KLARTAG

Abstract. We prove stability estimates for the Brunn-Minkowski inequality for convex sets. As opposed to previous stability results, our estimates improve as the dimension grows. In particular, we obtain a non-trivial conclusion for high dimensions already when

$$\text{Vol}_n \left(\frac{K + T}{2} \right) \leq 5 \text{Vol}_n(K) \text{Vol}_n(T).$$

Our results are equivalent to a thin shell bound, which is one of the central ingredients in the proof of the central limit theorem for convex sets.

1. Introduction

The Brunn-Minkowski inequality states, in one of its normalizations, that

$$\text{Vol}_n \left(\frac{K + T}{2} \right) \geq \sqrt{\text{Vol}_n(K) \text{Vol}_n(T)} \tag{1.1}$$

for any compact sets $K, T \subset \mathbb{R}^n$, where $(K + T)/2 = \{ (x + y)/2 : x \in K, y \in T \}$ is half of the Minkowski sum of K and T, and where Vol_n stands for the Lebesgue measure in \mathbb{R}^n. Equality in (1.1) holds if and only if K is a translate of T and both are convex, up to a set of measure zero.

The literature contains various stability estimates for the Brunn-Minkowski inequality, which imply that when there is almost-equality in (1.1), then K and T are almost-translates of each other. Such estimates appear in Diskant [8], in Groemer [13], and in Figalli, Maggi and Pratelli [11, 12]. We recommend Osserman [20] for a general survey on the stability of geometric inequalities.

All of the stability results that we found in the literature share a common feature: Their estimates deteriorate quickly as the dimension increases. For instance, suppose that $K, T \subset \mathbb{R}^n$ are convex sets with

$$\text{Vol}_n(K) = \text{Vol}_n(T) = 1 \quad \text{and} \quad \text{Vol}_n \left(\frac{K + T}{2} \right) \leq 5. \tag{1.2}$$

Supported in part by the Israel Science Foundation and by a Marie Curie Reintegration Grant from the Commission of the European Communities.

Received November 11, 2011; accepted in revised form September 5, 2012.