Extension of holomorphic functions defined on singular complex hypersurfaces with growth estimates

WILLIAM ALEXANDRE AND EMMANUEL MAZZILLI

Abstract. Let D be a strictly convex domain and X be a singular complex hypersurface in \mathbb{C}^n such that $X \cap D \neq \emptyset$ and $X \cap bD$ is transverse. We first give necessary conditions for a function holomorphic on $D \cap X$ to admit a holomorphic extension belonging to $L^q(D)$, with $q \in [1, +\infty]$. When $n = 2$ and $q < +\infty$, we then prove that this condition is also sufficient. When $q = +\infty$ we prove that this condition implies the existence of a BMO-holomorphic extension. In both cases, the extensions are given by mean of integral representation formulas and new residue currents.

Mathematics Subject Classification (2010): 32A22 (primary); 32A26, 32A27, 32A37, 32A40, 32A55, 32C30, 32D15 (secondary).

1. Introduction

In the last few years, many classical problems in complex analysis have been investigated in the framework of singular spaces; for example the $\bar{\partial}$-Neumann operator has been studied in [34] by Ruppenthal, the Cauchy-Riemann equation in [6,17,21,32,33] by Andersson, Samuelsson, Diederich, Fornæss, Vassiliadou, Ruppenthal, ideals of holomorphic functions on analytic spaces in [5] by Andersson, Samuelsson and Sznajdman, problems of extensions and restrictions of holomorphic functions on analytic spaces in [18,20] by Diederich, Mazzilli and Duquenoy.

In this article we will be interested in problems of extension of holomorphic functions defined on a singular complex hypersurface. Let D be a bounded pseudoconvex domain of \mathbb{C}^n with smooth boundary, let f be a holomorphic function in a neighbourhood of D and let $X = \{ z : f(z) = 0 \}$ be a singular complex hypersurface such that $D \cap X \neq \emptyset$. The first extension problem that one can consider is the following one: Is it true that a function g which is holomorphic on $D \cap X$ has a holomorphic extension to D?

The first author is partially supported by A.N.R. BL-INTER09-CRARTIN.

Received March 28, 2012; accepted in revised form January 28, 2013.