A perturbation result for the Riesz transform

BAPTISTE DEVVYVER

Abstract. We show a perturbation result for the Riesz transform: if M_0 and M_1 are complete Riemannian manifolds which are isometric outside a compact set, we give sufficient conditions so that the boundedness on L^p of the Riesz transform on M_0 implies the boundedness on L^p of the Riesz transform on M_1.

Mathematics Subject Classification (2010): 43AXX (primary); 53CXX, 58JXX (secondary).

1. Introduction

Let (M, g) be a Riemannian manifold. The Riesz transform problem, namely giving conditions on p and on the manifold such that the operator $d\Delta^{-1/2}$ – the so-called Riesz transform – is bounded on L^p, has recently undergone certain progress. A pioneering result which goes back to 1985 is a theorem of D. Bakry [2] which asserts that if the Ricci curvature of M is non-negative, then the Riesz transform on M is bounded on L^p for every $1 < p < \infty$. However, it is only recently that some progresses have been made to understand the behaviour of the Riesz transform if some amount of negative Ricci curvature is allowed. A general question is the following:

Question 1.1. What is the analogue of Bakry’s result for manifolds with some (small) amount of negative Ricci curvature?

Here, the smallest of the negative part of the Ricci curvature Ric_- should be understood in an integral sense, i.e. $\text{Ric}_- \in L'(d\mu)$, for some value of μ and some measure $d\mu$. A partial answer has been provided by T. Coulhon and Q. Zhang in [11], where it is shown essentially that if the negative part of the Ricci curvature is smaller in an integral sense than a constant ε (depending on the geometry of the manifold under consideration), then the Riesz transform is bounded on L^p for every $1 < p < \infty$. However, this result is not entirely satisfying, since it does not say what happens if the integral of the Ricci curvature is bigger than the threshold ε: thus, it does not cover the case of manifolds having non-negative Ricci curvature outside a compact set. Unlike manifolds with non-negative Ricci curvature, man-

Received July 27, 2011; accepted in revised version October 8, 2013.